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1. INTRODUCTION

A recent study by Shang [1] outlines an analytical vibration analysis for a hermetic capsule
that is described as a circular cylinder closed with hemispherical caps at both ends. Shang’s
[1] analysis is based upon Naghdi–Reissner shell theory and includes shear deformation.
The frequency of vibration results recorded by Shang [1] compare well with previous
results given by Tavakoli and Singh [2] and .OOzakca and Hinton [3]. Tavakoli and Singh [2]
studied the hermetic capsule using Love’s shell equations and recorded symmetric and
antisymmetric frequencies for free vibration. Later, .OOzakca and Hinton [3] verified the
results for the same hermetic capsule using a shell finite element based upon Mindlin–
Reissner theory that included shear deformation and rotary inertia effects. .OOzakca and
Hinton [3] not only tabulated the symmetric frequencies but independently verified the
vibration analysis. The capsule that was studied in references [1–3] had a radius to wall-
thickness ratio of approximately 50 and would qualify as a thin shell. It would seem
reasonable that theories that include shear deformation would agree with the more classic
thin shell equations.

The present study extends the analysis to include a somewhat thicker hermetic capsule.
A three-dimensional axisymmetric finite element based upon the equations of elasticity in
cylindrical co-ordinates is used to model the capsule. The results discussed in the previous
paragraph were used to verify the formulation and subsequent analysis. Additional
torsional frequencies were found that were not previously reported.

Non-dimensional frequencies are tabulated for the capsule, while the thickness and
length of the cylindrical section of the capsule are varied. Representative mode shapes are
shown for symmetric, antisymmetric and torsional frequencies.

2. FINITE ELEMENT MODELS

A nine-node Lagrangian isoparametric finite element was used to model the cross-
section of the capsule. The finite element was derived in axisymmetric two-dimensional
cylindrical co-ordinates following the discussion given by Buchanan [4] for axisymmetric
elasticity in r,y,z co-ordinates. The three-dimensional strain–displacement equations and
the formulation that extends the two-dimensional finite element analysis to represent a
three-dimensional analysis has been outlined by Buchanan and Chua [5]. The governing
three-dimensional elasticity equations are satisfied by assuming a periodic solution that
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separates y and time dependence t from r and z. Following reference [5] assume that
displacements can be represented as

u r; y; z; tð Þ ¼ U r; zð Þcos ny cosot; v r; y; z; tð Þ ¼ V r; zð Þsin ny cosot; ð1; 2Þ

w r; y; z; tð Þ ¼ W r; zð Þcos ny cosot; ð3Þ
where u,v,w and U,V,W are displacements in the r,y,z directions respectively. The circular
frequency is given by o and n is the circumferential wave number.

The isoparametric element is used to model the spherical end caps and cylindrical mid-
section as a continuous axisymmetric body. Results for complete hollow thick shells of
revolution were given by McGee and Spry [6] and were used to verify the axisymmetric
isoparametric formulation for a spherical shell. Those comparisons do not lead to new
results and are not tabulated here.

An analysis for the cylindrical section was compared to previous studies for hollow
cylinders [7] and was found to give satisfactory results.

3. FREE VIBRATION RESULTS

The model analyzed in references [1–3] had the following isotropic material properties,
Young’s modulus E=207(10 9) Pa, the Poisson ratio n=0�3, and density r=7800 kg/m3.
The corresponding elasticity constants are computed in Pa as

C11 ¼
E 1 � nð Þ

1 þ nð Þ 1 � 2nð Þ ¼ 287�654 109
� �

; C12 ¼
En

1 þ nð Þ 1 � 2nð Þ ¼ 119�423 109
� �

;

C44 ¼ G ¼ E

2 1 þ nð Þ ¼ 79�615 109
� �

: ð4Þ

The finite element model corresponding to references [1, 2] was defined in terms of actual
dimensions, that is, the radial dimension R=0�1143m that was assumed to correspond to
the distance to the mid-surface of the shell, the shell thickness h=0�00203m, the total
length of the cylindrical section L=0�343m, E and r. The frequency in reference [1] was
given in Hertz (Hz) and the result was divided by 2p. The results for frequency are given in
Table 1

Comparison of frequencies in Hz with existing literature. s}symmetric mode,

a}antisymmetic mode, t}torsional mode

n=0 n=1 n=2 n=3

m [1] [2] [2] [2] [2]

1 3213 t } } 2748 2740 (0�3) 868 854 (1�6) 748 601 (24)
2 4012 s 4002�8 4011 4209 4198 (0�3) 2475 2471 (0�2) 1764 1732 (1�8)
3 5542 a 5533�5 5539 5095 5086 (0�02) 3972 3946 (0�6) 3060 3000 (2�0)
4 6299 t } } 5807 5790 (0�3) 5030 5015 (0�3) 4154 4099 (1�3)
5 6303 s 6296�7 6292 5947 5933 (0�2) 5826 5712 (2�0) 5029 4954 (1�5)
6 6675 a 6663�8 6671 6346 6335 (0�2) 6208 6134 (1�2) 5746 5603 (2�6)
7 6816 s 6805�9 6808 6627 } 6401 } 6669 }
8 7023 a 7012�7 7016 6786 } 6534 } 6694 }
9 7098 s } } 6857 } 6863 } 6944 }

10 7134 a } } 6972 } 6898 } 7020 }
11 7177 s } } 7135 } 7196 } 7373 }
12 7255 a } } 7157 } 7215 } 7388 }



Table 2

Frequencies O=oa[r/C44]1/2 for a hermetic capsule with a/h=50 and a/h=20, n=0�3 and

L/a=1,2 and 3. Underscored numbers indicate the order of the lowest frequencies,

s}symmetric mode, a}antisymmetic mode, t}torsional mode

n Mode a/h=50 a/h=20

L/a=1 L/a=2 L/a=3 L/a=1 L/a=2 L/a=3

0 1 1�131 s 0�934 t 0�723 t 1�154 s 0�940 t 0�727 t
2 1�305 t 1�027 s 0�908 s 1�317 t 1�044 s 0�918 s
3 1�356 a 1.305 a 1�259 a 1�385 a 1�331 a 1�282 a
4 1�508 s 1�480 s 1�420 t 1�566 s 1�523 s 1�428 t
5 1�543 a 1�530 a 1�431 s 1�615 a 1�595 a 1�460 s
6 1�604 s 1�576 s 1�518 a 1�683 s 1�636 s 1�576 a

1 1 1�110 0�827 0�619 1�126 0�835 0�620
2 1�142 1�042 0�952 1�160 1�056 0�961
3 1�421 1�293 1�154 1�469 1�342 1�168
4 1�452 1�383 1�313 1�487 1�417 1�337
5 1�542 1�477 1�347 1�641 1�530 1�371
6 1�577 1�488 1�440 1�720 1�541 1�475

2 1 0�561 5 0�305 4 0�190 3 0�577 3 0�320 2 0�206 1
2 1�160 0�791 0�558 1�200 0�812 0�569 5
3 1�408 1�144 0�893 1�450 1�187 0�916
4 1�457 1�343 1�139 1�518 1�400 1�182
5 1�519 1�435 1�304 1�629 1�492 1�369
6 1�573 1�472 1�408 1�735 1�563 1�470

3 1 0�457 4 0�229 2 0�137 1 0�526 1 0�300 1 0�239 2
2 1�056 0�617 0�389 1�160 0�680 6 0�456 4
3 1�414 0�973 0�680 1�542 1�073 0�753
4 1�525 1�232 0�934 1�622 1�392 1�039
5 1�547 1�423 1�141 1�717 1�578 1�296
6 1�610 1�526 1�307 1�871 1�638 1�517

4 1 0�395 2 0�189 1 0�163 2 0�570 2 0�426 3 0�395 3
2 0�938 0�487 0�320 5 1�146 6 0�676 5 0�510
3 1�350 0�815 0�540 1�603 1�032 0�727
4 1�567 1�097 0�773 1�739 1�383 0�989
5 1�592 1�334 0�992 1�845 1�650 1�261
6 1�637 1�536 1�175 2�046 1�750 1�530

5 1 0�390 1 0�279 3 0�268 4 0�737 4 0�638 4 0�616 6
2 0�861 0�455 6 0�342 6 1�224 0�810 0�693
3 1�297 0�731 0�495 1�701 1�109 0�848
4 1�592 1�009 0�697 1�889 1�452 1�068
5 1�638 1�269 0�899 2�024 1�753 1�326
6 1�674 1�514 1�087 2�268 1�898 1�603

6 1 0�445 3 0�368 5 0�376 0�988 5 0�909 0�891
2 0�836 6 0�488 0�425 1�396 1�046 0�954
3 1�273 0�712 0�528 1�860 1�295 1�076
4 1�612 0�971 0�683 2�091 1�612 1�296
5 1�689 1�237 0�869 2�263 1�917 1�493
6 1�728 1�501 1�049 2�545 2�097 1�761
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Table 1 and show good agreement with the results that are summarized in reference [1].
The first 12 frequencies are listed and those that can be compared with reference [1] are
accurate to within 0�2%. New information is presented since the first and fourth
frequencies are torsional modes that were not found using the shell theory formulation
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that was reported in references [1–3]. Additional frequencies are given in Table 1
corresponding to higher mode of motion for the circumferential wave numbers n used in
reference [2]. The number in parentheses corresponds to the percent difference in the
present solution and the referenced solution. There is a large discrepancy for the first mode
with circumferential wave number n=3.

The axisymmetric capsule is studied assuming non-dimensional co-ordinates and
material properties. Co-ordinates are non-dimensional with respect to the outside
radius of the capsule, a, and material constants are non-dimensional with respect C44 or
Table 3

Frequencies O=oa[r/C44]1/2 for a hermetic capsule with a/h=10 and a/h=5, n=0.3 and

L/a=1,2 and 3. Underscored numbers indicate the order of the lowest frequencies,

s}symmetric mode, a}antisymmetic mode, t}torsional mode

n Mode a/h=10 a/h=5

L/a=1 L/a=2 L/a=3 L/a=1 L/a=2 L/a=3

0 1 1�199 s6 0�950 t 0�732 t6 1�298 s5 0�967 t4 0�742 t4
2 1�336 t 1�074 s 0�936 s 1�373 t6 1�136 s6 0�973 s6
3 1�447 a 1�387 a 1�332 a 1�599 a 1�578 a 1�445 a
4 1�670 s 1�600 s 1�440 t 1�914 s 1�756 s 1�462 t
5 1�785 a 1�697 a 1�522 s 2�265 a 1�870 t 1�657 s
6 1�939 s 1�772 s 1�660 a 2�388 s 1�930 a 1�813 a

1 1 1�158 4 0�865 5 0�624 4 1�231 3 0�874 2 0�633 2
2 1�197 5 1�082 0�981 1�288 4 1�140 1�022
3 1�579 1�362 1�200 1�782 1�491 1�278
4 1�580 1�486 1�379 1�856 1�615 1�454
5 1�897 1�626 1�426 2�293 1�850 1�576
6 1�930 1�677 1�570 2�504 2�055 1�832

2 1 0�617 1 0�358 1 0�251 1 0�739 1 0�470 1 0�396 1
2 1�272 0�865 6 0�608 3 1�437 1�010 5 0�736 3
3 1�546 1�277 0�981 1�836 1�478 1�150
4 1�692 1�508 1�286 2�136 1�800 1�511
5 1�931 1�647 1�497 2�286 2�115 1�793
6 2�082 1�824 1�620 2�647 2�191 2�056

3 1 0�691 3 0�496 2 0�445 2 1�120 2 0�954 3 0�907 5
2 1�363 0�864 4 0�639 5 1�800 1�319 1�099
3 1�747 1�310 0�953 2�328 1�808 1�434
4 1�929 1�656 1�294 2�788 2�230 1�823
5 2�227 1�845 1�608 3�375 2�604 2�190
6 2�579 2�034 1�808 3�393 3�039 2�514

4 1 0�959 3 0�829 3 0�797 1�770 1�651 1�614
2 1�544 1�084 0�920 2�360 1�926 1�795
3 1�997 1�479 1�152 2�958 2�357 2�020
4 2�254 1�863 1�459 3�502 2�814 2�367
5 2�609 2�123 1�792 4�141 3�245 2�752

5 1 1�375 1�275 1�248 2�579 2�480 2�448
2 1�870 1�476 1�348 3�100 2�713 2�573
3 2�350 1�813 1�533 3�722 3�094 2�793
4 2�680 2�190 1�796 4�319 3�546 3�100

6 1 1�894 1�808 1�783 3�491 3�401 3�371
2 2�325 1�983 1�873 3�963 3�609 3�485
3 2�811 2�279 2�034 4�584 3�953 3�681
4 3�200 2�637 2�266 5�212 4�387 3�956
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shear modulus G. In all cases the Poisson ratio is used as n=0�3. Non-dimensional
variables are

x ¼ r=a; Z ¼ z=a; %CC1k ¼ C1k=C44; O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=C44

p
: ð5Þ

Let a=r=C44=1 and it follows that, using equation (4), C11=3�5 and C12=1�5. The
inside radius of the capsule is defined as, b, and the thickness of the capsule is

h ¼ a � b: ð6Þ

Results are tabulated for values of a/h=50, 20, 10 and 5 corresponding to b=0�98, 0�95,
0�9 and 0�8 respectively. The total length of the cylindrical section connecting the spherical
caps is defined in terms of the radius a and results are given for L/a=1, 2 and 3. The
capsule with L/a=3 and a/h=50 is similar to the capsule of Table 1 and all other capsules
that are studied have a/h less than 50. It is anticipated that as the shell becomes thicker, the
elasticity finite elements will maintain the accuracy of the benchmark solutions of
reference [1] indicated in Table 1.

Tables 2 and 3 show the results for non-dimensional frequency for the capsules that
were studied. The tables indicate that the frequency decreases as the capsule increases in
length for a given shell wall thickness and that behavior is common to all capsules that
were studied. However, for a given capsule length, the frequency increases as the wall
thickness increases. The higher circumferential wave numbers are less significant as the
shell wall thickness increases. Similarly, as the length of the capsule increases, the
circumferential wave number is less important. For instance, in Table 2, the underscored
number to the right of the frequency represents the ordering of the frequencies beginning
with the lowest. For a/h=50, the lowest frequency occurs for n=5 when L/a=1, but
changes to n=4 when L/a=2 and changes to n=3 when L/a=3.

The motion of the capsule can be separated into pure torsional modes or pure radial–
longitudinal modes when the circumferential wave number is taken as zero. The mode
Figure 1. Radial and longitudinal motion of the cross-section of a hermetic capsule with a/h=5, L/a=1 and
circumferential wave number n=2.



Figure 2. Torsional motion of the cross-section of a hermetic capsule with a/h=5, L/a=1 and circumferential
wave number n=2. Three-dimensional and contour plots are shown for each frequency.
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shapes corresponding to n=0 are designated as torsional, symmetric or antisymmetric in
Tables 2 and 3. The lowest frequency occurs when the circumferential wave number n is
greater than zero and for n greater than zero, the motion of the capsule is a combination of
radial, longitudinal and torsional displacements. The mode shapes corresponding to the
first six frequencies for a/h=5, L/a=1 and n=2 are shown in Figures 1 and 2. The motion
of the cross-section corresponding to the r–z co-ordinate directions is shown in Figure 1.
The symmetric and antisymmetric motions of the cross-section are distinct. In fact, it
would appear that frequencies O4 and O5 correspond to the same mode shape. The
torsional motion for the same frequencies is shown in Figure 2. Two views are shown for
each torsional motion, a three-dimensional section and a corresponding contour plot. The
three-dimensional displacement is relative to a slice taken through the cross-section and
the mode shape for O2 is identifiable as a symmetric motion relative to the center of the
capsule. The contour plot shows the same mode shape with a series of solid lines versus
dashed lines for motion in the opposite directions. The three-dimensional plots for O4 and
O5 both show a symmetrical type of motion, however, an inspection of the contour plots
show that O5 is a somewhat pure torsional motion symmetric with respect to the center of
the capsule. The contour plot for O4 shows a warping type of motion in addition to the
torsional motion. The contour lines in the spherical cap section change from solid to
dashed through the thickness. It follows that while modes 4 and 5 appear to have the same
motion, they are quite different. The torsional motion for O6 shows a similar warping type
of behavior.
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4. CONCLUDING REMARKS

Free vibration results for hermetic capsules have been presented in the format of tables
of non-dimensional frequencies and plots of selective mode shapes. Results in the
literature for a relatively thin hermetic capsule were verified and the analysis was extended
to include relatively thick capsules. Finite elements, based upon three-dimensional
elasticity, were used in the present analysis and compared favorably with frequencies that
were computed using various shell theories.
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